Handwriting word recognition using windowed Bernoulli HMMs
نویسندگان
چکیده
منابع مشابه
Handwriting word recognition using windowed Bernoulli HMMs
Hidden Markov Models (HMMs) are now widely used for off-line handwriting recognition in many languages. As in speech recognition, they are usually built from shared, embedded HMMs at symbol level, where state-conditional probability density functions in each HMM are modeled with Gaussian mixtures. In contrast to speech recognition, however, it is unclear which kind of features should be used an...
متن کاملArabic Printed Word Recognition Using Windowed Bernoulli HMMs
Hidden Markov Models (HMMs) are now widely used for off-line text recognition in many languages and, in particular, Arabic. In previous work, we proposed to directly use columns of raw, binary image pixels, which are directly fed into embedded Bernoulli (mixture) HMMs, that is, embedded HMMs in which the emission probabilities are modeled with Bernoulli mixtures. The idea was to by-pass feature...
متن کاملDiscriminative Bernoulli HMMs for isolated handwritten word recognition
Bernoulli HMMs (BHMMs) have been successfully applied to handwritten text recognition (HTR) tasks such as continuous and isolated handwritten words. BHMMs belong to the generative model family and, hence, are usually trained by (joint) maximum likelihood estimation (MLE) by means of the Baum-Welch algorithm. Despite the good properties of the MLE criterion, there are better training criteria su...
متن کاملArabic Handwritten Word Recognition based on Bernoulli Mixture HMMs
This thesis presents new approaches in off-line Arabic Handwriting Recognition based on conventional Bernoulli Hidden Markov models. Until now, the off-line handwriting recognition, in particular, the Arabic handwriting recognition is still far away form being perfect. Hidden Markov Models (HMMs) are now widely used for off-line handwriting recognition in many languages and, in particular, in A...
متن کاملArabic Handwritten Word Recognition Using HMMs with Explicit State Duration
We describe an offline unconstrained Arabic handwritten word recognition system based on segmentation-free approach and discrete hidden Markov models (HMMs) with explicit state duration. Character durations play a significant part in the recognition of cursive handwriting. The duration information is still mostly disregarded in HMM-based automatic cursive handwriting recognizers due to the fact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2014
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2012.09.002